DEVELOPING GRID MODEL FOR THE STATE

Pavithra Rajagopalan
Principal Technical Consultant, Prism Holdings

Agenda

- Background & Capabilities
- Notable Work
- Case Study Gen & Trans Planning
- Grid Model Need
- Appendices

Background & Capabilities

- Notable Work
- Case Study Gen & Trans Planning
- □ Grid Model Need
- Appendices

Background & Capabilities

- Over 100 generation & transmission planning projects with ~23 clients in US
- Selected optimum Points of Interconnection (POIs) for generation development avoiding congested spots
- Studied over 15 GW of renewable projects and 5 GW of natural gas projects
- Electrical system studies Load Flow, Short Circuit & Relay Coordination for distribution systems
- Software: PowerWorld and PSSE for transmission network and ETAP for distribution network

- Background & Capabilities
- Notable Work
- Case Study Gen & Trans Planning
- □ Grid Model Need
- Appendices

Notable Work

- Provided the due diligence analysis reports for generation assets acquisition for Alcoa Hydro Power Plants in Tennessee in 2011 and Renewable Portfolio enhancements for Sumitomo Corporation in 2013
- Identified solutions to eliminate over \$M 200 network upgrades for 850 MW Natural Gas plant in Pennsylvania (In-service since 2016) and \$M 100 for 675 MW Natural Gas plant in New Jersey (In-service since 2015)
- Automated daily generation curtailment data capture in Python
- Notable Clients: E.On, Panda Funds, Pioneer Green Energy, Moxie Energy, Sun Edison, BP Alternative Energy, Orion Renewables

Notable Research & Publication Work

- Authored whitepaper on US Electrical Market in 2008 –
 Overview and Trend in generation, load, transmission expansion, congestion and environmental aspects of the states comprising of SOx, NOx and COx emissions
- Presented at the International RE Grid Integration conference 2017 on "Grid Integration Challenges in Offshore Wind in Tamil Nadu & Gujarat"
- Paper at the 7th International Conference on Power Systems by IEEE on "<u>Challenges for Policy Makers & Transmission Planners in</u> Offshore Wind Integration in Tamil Nadu & Gujarat"

Notable Work - Summary

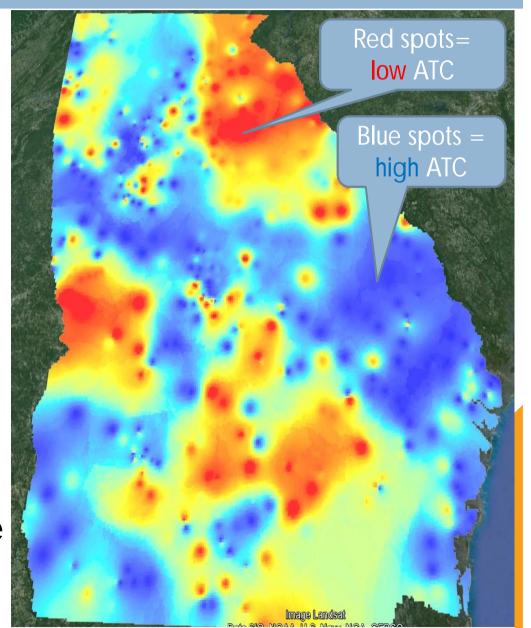
Summary of Renewable Energy Projects

#	Client	Project - Location	Fuel	Studied MW	Type of study	Year Studied	Final Project size <= 20 MW or > 20 MW
1	Safe Harbor	SH	Hydro	420	NERC Compliance study	2009	> 20 MW
2	Orion Renewables	NJ	Solar	1000	Site screening & GI studies & file application	2011 - 2012	7* <= 20 MW
3	Orion Renewables	GA	Solar	1000	Site screening & GI studies	2012 - 2013	5* <= 20 MW
4	Orion Renewables	TN	Wind	1000		2011 - 2012	5* <= 20 MW
5	Brookfield Renewables	Alcoa - TN	Hydro	352	Transmission consultant as a part of due diligence for acquisition of few generation projects	2011	
6	Volkswind	GEN-2010-44 - NE	Wind	100	Validate & Redo SPP's study to minimize network upgrade cost	2012	> 20 MW initially & then made <=20 MW finally
7	Sempra	Prairie Hills / Callaway - NE	Wind	200		2016	> 20 MW
8	EON	SC	Wind	1000	Site screening & GI studies	2017	> 20 MW
9	EON	ОН	Wind	1000		2017	> 20 MW
10	OCI Solar	GA	Solar	20	Site screening & GI studies & file application	2012	<= 20 MW
11	FOWIND	Tamil Nadu, Gujarat	Offshore wind	1000	Grid integration study - preliminary validating STU's reports	2016 - 2017	> 20 MW

Notable Work – Summary

Summary of Non-Renewable Energy and Mix of RE & Non-RE Projects

#	Client	Project - Location	Fuel	Studied MW	Type of study	Year Studied	Final Project size <= 20 MW or > 20 MW
1	Hess Corp	T107 - NJ	Natural Gas	650	Validation of PJM's studies to minimize network upgrade cost	2009 - 2010	> 20 MW
2	Moxie Energy	Liberty - PA	Natural Gas	850		2011 - 2012	> 20 MW
3	Moxie Energy	Patriot - PA	Natural Gas	850		2011 - 2012	> 20 MW
4	Panda Funds	TX	Natural Gas	1700	Site screening & GI studies & file	2010	> 20 MW
5	Panda Funds	MD	Natural Gas	850	application & Validate ISO's studies	2012	> 20 MW
6	PBMR	Span US			US energy market research	2009	
7	EON	TX			Automated module tracking client generation curtailment	2008	> 20 MW
8	Sumitomo	Span US & Canada			Transmission consultant as a part of due diligence for acquisition of generation projects	2013	> 20 MW



- Background & Capabilities
- Notable Work
- Case Study Gen & Trans Planning
- □ Grid Model Need
- Appendices

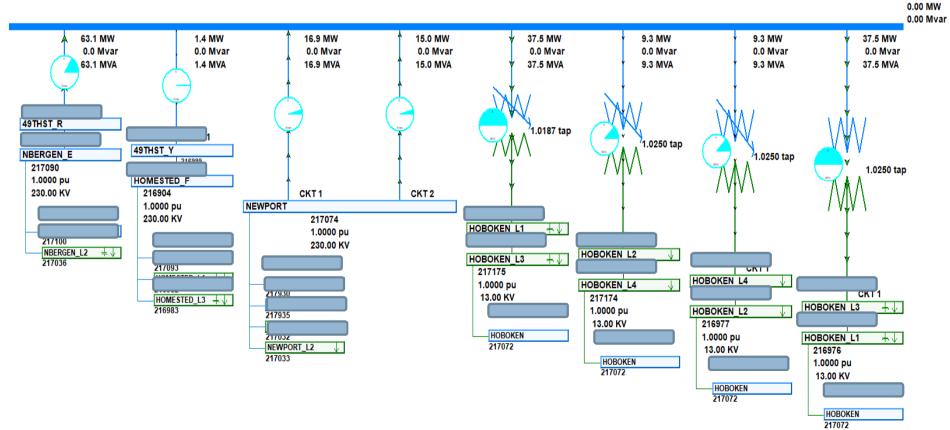
Case Study – Georgia

- The study was carried out for Georgia Transmission Company (GTC) to identify
 - Optimum solar injection points
 - Possible congested spots for effective transmission planning
- The contouring is based on the Available Transmission Capacity (ATC) at each studied node – 69 to 345 kV
 - The bluer spots have relatively higher ATC & Redder spots are more congested

Case Study – Georgia

- Factors considered in ranking of the studied nodes are:
 - Project size (MW)
 - Interconnection cost w.r.t. reliability upgrades
 - Impact of prior queues
 - Previously existing known congestion issues
 - Planned transmission projects

- Takeaways for GTC:
 - Issued Request for Proposal to bidders at the blue spots
 - Annual Transmission Planning included the flowgates at the red spots
 - Advanced planning for balancing intermittency due to RE during specific generation & transmission outages



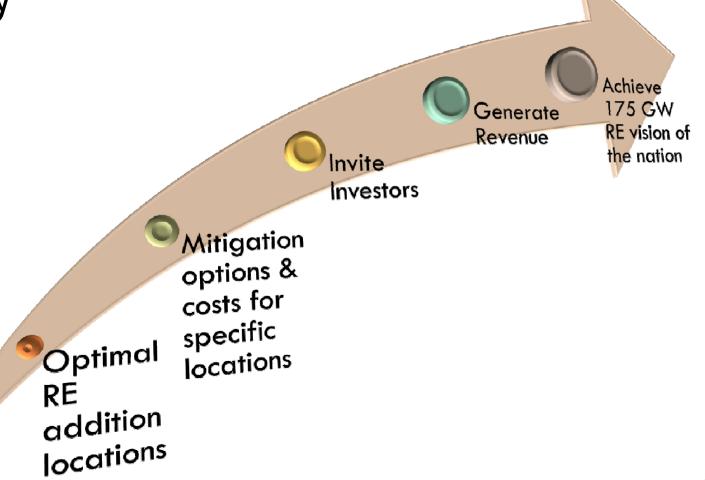
Case Study – Georgia

- Basic Grid Model is the underlying foundation for such studies:
 - Transmission data Lines and Transformers
 - Generation data Size and location
 - Load data Size and location

Bus: H Nom kV: 230.00 Area: PSEG (231) Zone: ZONE_250 (250)

1.0000 pu 230.00 KV 212.07 Deg Not Valid \$/MWh

- Background & Capabilities
- Notable Work
- Case Study Gen & Trans Planning
- □ Grid Model Need
- Appendices


Need for Grid Model

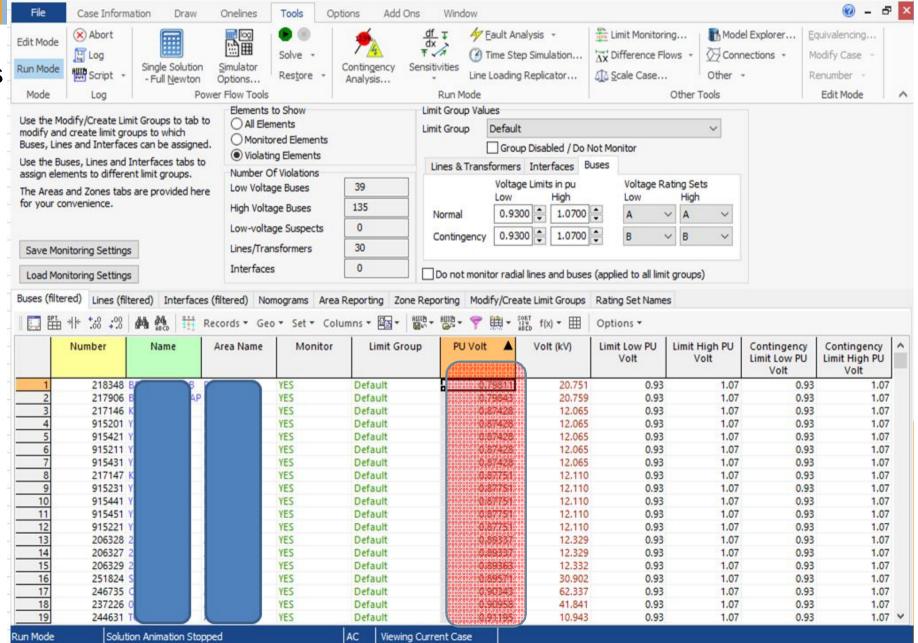
- Application of generation and transmission planning in India
 - GIS contouring merging solar radiance and transmission flowgate maps
 - Knowledge of optimal locations for RE additions based on grid accessibility and evacuation
 - Knowledge of mitigation options and the involved cost at specific locations
 - With 2. huge investors base can be invited generating revenue
 - With 3. grid can be enhanced to accommodate investors and to attract more
 - Achieve 175 GW green energy vision of the nation by 2022

Need for Grid Model

Here is the roadmap of benefits of the model & the study

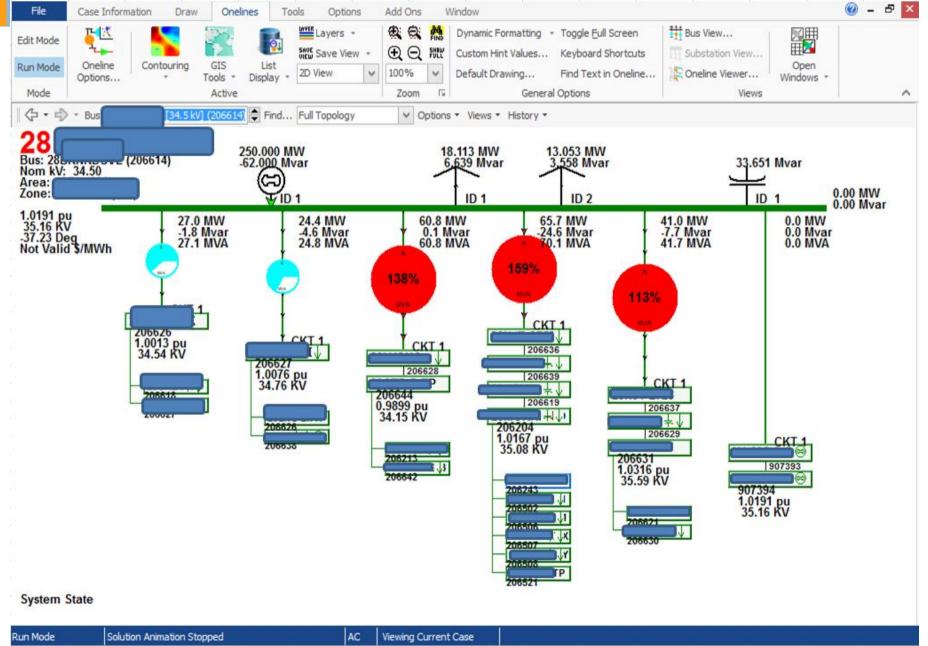
Need for Grid Model

- To conduct comprehensive studies on the current, planned and conceptual scenarios, relevant data is the key
 - With cluttered data as the input, credibility of the resulting output decreases
- For 'Digital India' to become real, vital aspects of the economy need to be digitalized
 - Enormous intelligence can be drawn from the archived and real time data
 - Any updates to the system will be reflected in hours for experts to analyze
 - Policy makers can assess and validate the impact of many scenarios using such digital models


A typical LV system with high solar penetration

- A typical LV system from 34.5 kV level with 0.5 GW of solar at two random substations serving load at a distant random substation in a hypothetical region is represented here
- Power Flow solution is applied (Newton Raphson) on the system & two snapshots are presented here:
 - List of top buses with voltage issues
 - Power flow snapshot around 250 MW generation

A typical LV system with high solar penetration


List of buses with voltage issues in descending order with 250 MW

A typical LV system with high solar penetration

Power flow snapshot around 500 MW generation

Current Course of Action

- State Load Dispatch Center and Prism are working closely in developing the model for the state
- Work is in progress

Thank you!

Contact Details:

Pavithra Rajagopalan

pavithra@prismholdings.in

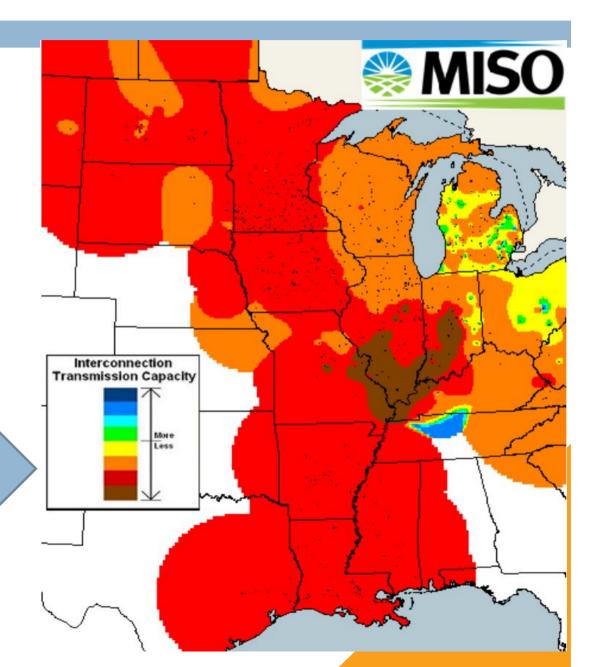
+91 9962259626

https://www.linkedin.com/profile/preview?locale=en_US&trk=prof-0-sb-preview-primary-button

- Background & Capabilities
- Notable Work
- Case Study Gen & Trans Planning
- □ Grid Model Need
- Appendices

Appendix

Microsoft Office Excel Worksheet


- Technical details of load flow studies can be discussed at interest
- Transmission Planning Impact in US
- Current work on developing the state grid model

ansmission Planning Impact in US

PJM Queue Status

Status	MW		
Active	47,158		
IS / ISP	35,628		
Suspended	4,016		
UC	14,647		

MISO Off Peak
 Transmission Capacity

